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Abstract
Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest 
that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the 
inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are 
considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by 
regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, 
in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google 
Scholar, Scopus, and Cochrane libraries.
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LKB	� Liver kinase B
AMPK	� AMP-activated protein kinase
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LRS	� Leucyl-tRNA synthetase
GAP	� GTPase activating proteins
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EIF4E	� Eukaryotic translation initiation factor 4E
S6K1	� S6 kinase 1
mSIN1	� Mammalian stress-activated protein kinase 

interacting protein 1
TGF	� Transforming growth factor
IPF	� Idiopathic pulmonary fibrosis
Grb10	� Growth factor receptor-bound protein 10
ERK	� Extracellular signal-regulated kinase
RSK1	� Ribosomal S6 kinase 1
IKKβ	� IκB kinase β
GSK3β	� Glycogen synthase kinase 3β
IRS	� Insulin receptor substrate
DDIT4	� DNA-damage-inducible transcript 4
TP53	� Tumor suppressor protein 53
ISCs	� Intestinal stem cells
cADPR	� Cyclic ADP ribose
SIRT1	� Sirtuin 1
PTEN	� Phosphatase and tensin homolog
TNFα	� Tumor necrosis factor α
TRAF6	� Tumor necrosis factor receptor-associated factor 
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TLR4	� Toll-like receptor 4
Nod2	� Nucleotide-binding oligomerization domain 2
MDP	� Muramyl dipeptide
FCS	� Fetal calf serum
ECH	� Echinacoside
STAT3	� Signal transducer and activator of transcription 
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iNOS	� Inducible nitric oxide synthase
ASII	� Astragaloside II
NF-кB	� Nuclear factor кB

Introduction

Inflammation and oxidative stress play pivotal roles in 
pathogenesis of many diseases. The inflammatory mediators 
such as interleukins (ILs), interferons (INF-s), and tumor 
necrosis factor (TNF)-α can exacerbate inflammatory dis-
eases because of overexpression of several pathways such 
as nuclear factor kappa B (NF-κB), peroxisome proliferator-
activated receptors (PPAR-γ), signal transducer of activators 
of transcription (STAT), nod‐like receptor family protein 3 
(NLRP), toll-like receptors (TLR), mitogen‐activated pro-
tein kinase (MAPK), and mammalian target of rapamycin 
(mTOR) pathways (Lashgari et al. 2022). Inflammation is 
an early trigger in many diseases including cancer, type 2 

diabetes, cardiovascular disease, atherosclerosis, neurode-
generative diseases, and inflammatory bowel disease (IBD) 
(Lashgari et al. 2022; Lashgari et al. 2020; Roudsari et al. 
2020; Zandi et al. 2021). Statins are the drugs of choice in 
prevention of cardiovascular disease, both in terms of effi-
ciently lowering plasma low-density lipoproteins cholesterol 
(LDL-C), and in terms of cost-effectiveness. Besides their 
LDL-C lowering properties, statins have different pleiotropic 
effects such as anti-inflammatory and immunomodulatory 
effects, which are beneficial in management of inflammatory 
disorders (Pickering 2021; Glass et al. 2010; Bahrami et al. 
2020; Dehnavi et al. 2021; Khalifeh et al. 2021; Shakour 
et al. 2020; Sohrevardi et al. 2021; Vahedian-Azimi et al. 
2021; Kouhpeikar et al. 2020; Serban et al. 2015; Sahebkar 
et al. 2015; Bland et al. 2022).

Advanced molecular and cellular analyses showed that 
the mTOR pathway is involved in inflammatory process and 
inflammatory diseases, mainly by having effects on inflam-
matory mediators. The aim of this article is to present data 
on the inhibitory effect of statins on mTOR pathway, struc-
tures and functions, and their possible interactions which 
might be used as novel therapeutic approach in treatment 
of inflammatory diseases (Fig. 1) (Murata 2018; Kotas and 
Medzhitov 2015).

Mammalian target of rapamycin (mTOR) structure

mTOR refers to Tor1 and Tor2 in Saccharomyces cerevi-
siae, which are resistant to rapamycin. mTOR is a serine/
threonine protein kinase which is associated with phos-
phatidylinositol 3-kinase-related kinase (PIKK). mTORs 
are involved in autophagy, protein synthesis, cell growth, 
proliferation, mitochondrial digestion system, and diges-
tion systems in general. mTOR is divided into mTORC1 
and mTORC2. mTORC1 consists of SEC13 protein 8 
(mLST8)/G-protein β subunit-like protein (GβL), the reg-
ulatory-associated protein of mTOR (Raptor), DEPTOR, 
PRAS40, and platform protein TTI1/TEL2 complex (Yang 
et al. 2013). mTORC1 is involved in different pathways and 
processes such as cell development and apoptosis, DNA dys-
function, hypoxia, and regulation of autophagy. The AKT, 
extracellular signal-regulated kinase (ERK), and IκB kinase 
β (IKKβ) can all phosphorylate TSC, resulting in activa-
tion of mTORC1. mTORC2 is composed of mTOR and 
the mammalian stress-activated protein kinase association 
protein 1 (mSIN1), mLST8/G_L, drug-insensitive compan-
ion of mTOR (DICTOR), Protor 1/2, DEPTOR, TTI1, and 
TEL2 (Yang et al. 2018). The TSC family is responsible for 
regulation of the mTOR pathway. AMPK phosphorylates 
TSC2 and mTORC1. mTORC1 regulates the cell hemosta-
sis and inflammation, while mTORC2 controls cell survival 
and proliferation. mTOR pathway is also controlled by the 
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PI3K/AKT signals. PI3K stimulates mTORC2 and mTORC1 
(Kaur et al. 2021; Afify et al. 2021).

mTOR and inflammatory mechanisms

As mentioned, mTOR signaling pathway mediates the 
inflammatory reactions and inflammatory diseases (Fig. 1). 
Inactivation of the mTOR signaling leads to autophagy. 
Autophagy contributes to the modulation of cell processes. 
Rapamycin, as the mTOR inhibitor, can initiate autophagy. It 
was demonstrated that mTOR signaling pathways and their 
overlaping with other inflammatory pathways may activate 
the inflammatory cascade and could be considered as a novel 
therapeutic approach for inflammatory diseases (Lee and 
Hung 2007; Dazert and Hall 2011).

It was well established that oxidative stress and free radi-
cals trigger the inflammatory reactions due to DNA damage, 
resulting in secretion of tumor necrosis factor α (TNFα), 
IL-1β, TGF-β, IL-12, and IL-6. TGF-β induces the P13/
AKT signaling pathway leading to the mTORC1 activation. 
In addition, TGF-β directly enhances the mTORC1 activa-
tion and contributes to the modulation of inflammatory pro-
cess. It was shown that statins could inhibit mTORC1. The 
phosphorylated AKT (p-Akt) activates mTORC1, resulting 
in inhibition of autophagy. Suppression of the PI3K-AKT 
signaling pathway decreases the inflammatory response and 
stimulates autophagy, leading to modulation of the inflam-
matory reactions (Gagliano et al. 2013; Tiedemann et al. 
2017). PTEN and PI3K-AKT can be inhibited by several 
drugs, among which statins are quite important, mainly by 
downregulation of mTORC1 expression and induction of 
autophagy. This effect offers a possibly important pathway 
for management of inflammation. Inhibition of PI3K-AKT-
mTORC1 suppresses the IKK/NF-kB signaling and can 

block the production of IFN-γ, IL-6, IL-8, IL-1, and TNF-α 
(Torrealba et al. 2019; Dan et al. 2008). TLR4 activates 
mTORC1 by both P13/AKT and p38MAPK signaling path-
ways. Phosphorylation of mTORC1 induces TGF-β, AKT, 
and P38MAPK. Therefore, the mTORC1 pathway can be a 
basic trigger for inflammatory events. It has been shown that 
prevention of mTORC1 by statins can switch the P38MAPK/
mTORC1 activity, proposing a probable approach for 
designing drugs with anti-inflammatory and therefore ben-
eficial effects on inflammatory diseases (Hernández et al. 
2011; Pazhooh et al. 2021).

Statins

Among a myriad of new and classical lipid-lowering agents 
(Sahebkar and Watts 2013a; Sahebkar and Watts 2013b; 
Backes and Hilleman 2021), statins are the first choice for 
atherosclerotic cardiovascular disease (CVD) prevention. 
Statins decrease serum LDL-C by inhibiting the enzyme 
HMG-CoA reductase, which is crucial for the synthesis 
of L-mevalonate—a precursor of cholesterol. Therefore, 
they reduce cholesterol production in the cells, particularly 
hepatocytes, and decrease metabolites of the cholesterol 
synthesis cascade, including isoprenoid compounds such as 
farnesyl pyrophosphate (FPP), and geranyl phosphatidylcho-
line (GGPP). GTP-binding proteins are affected and have 
effects on cells’ shape, secretion, differentiation, motility, 
and proliferation. Statins are either based on some natural 
substances such as lovastatin, mevastatin, pravastatin, pita-
vastatin, and simvastatin, which are fungal derivatives or are 
totally synthetic such as atorvastatin, fluvastatin and rosuv-
astatin. These drugs can be differentiated based on their dif-
ferences in lipophilicity/hydrophilicity, elimination half-life, 

Fig. 1   Role of statins in modu-
lation of inflammatory diseases
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and effects on decreasing LDL-C. Statins are known to be 
safe. However, their tolerance remains a clinically important 
issue affecting long-term compliance (Pinal-Fernandez et al. 
2018; Jain and Ridker 2005; Banach et al. 2015).

The mTOR/statins intervention in different 
inflammatory diseases

Malignant diseases

According to some earlier studies, the activity of the mTOR 
signaling increases in different malignant diseases. It was 
estimated that the mTOR signaling has an effect on approxi-
mately 30% of solid malignant diseases and its dysregulation 
is considered to be one of the most fundamental mechanisms 
involved in pathophysiology of solid malignant tumors (Fru-
man and Rommel 2014). Several mechanisms are implicated 
in this effect. First, since mTOR participates in several cell 
biology processes including cell proliferation, growth and 
survival, there is no doubt that mTOR is involved in malig-
nant processes (Mayer and Arteaga 2016). Second, in human 
malignant diseases, several mutations were observed in dif-
ferent elements of the PI3K signaling pathway, which were 
upstream of mTORC1 and mTORC2. Third, it has been 
shown that several genes such as serine threonine kinase 
11, PTEN, Tsc1/2, and neurofibromatosis type1, were 
mutated in some familial malignant syndromes, and were 
located upstream of the mTOR signaling pathway (Laplante 
and Sabatini 2012). Moreover, p53 loss, a common event in 
different malignant diseases, can activate mTORC1 (Feng 
et al. 2005). As already mentioned, the mTOR signaling is 
involved in cell proliferation and metabolism, thereby partic-
ipating in tumorigenesis and tumor progression. It has been 
shown that dysregulation in protein synthesis at the 4E-BP1/
eIF4E level, which is a downstream of mTORC1, plays a 
crucial role in tumorigenesis (Dowling et al. 2010). The 
eIF4E mRNAs, expressing pro-oncogenic proteins, medi-
ate tumor angiogenesis, progression, and metastasis (Hsieh 
et al. 2010). There is a plethora of evidence indicating that 
the mTOR activation correlates with the enhancement of 
the biogenesis of ribosome, which stimulates cell prolifera-
tion, and consequently enhances the cell growth (Laplante 
and Sabatini 2012). mTOR can also stimulate cell growth 
by inhibiting the autophagy process (White 2015). Since 
autophagy is considered to be anti-tumorigenic, inhibition 
of autophagy results in tumor formation. Recent evidence 
suggests that under specific situations, autophagy may 
unexpectedly contribute to tumor progression (Iacobuzio-
Donahue and Herman 2014; Rosenfeldt et al. 2013; White 
and DiPaola 2009). mTORC1 inactivates the UNC-5-like 
autophagy-activating kinase 1 (ULK1), thus preventing the 
formation of ULK1-ATG13-FIP200 complex, an essential 

factor for autophagy initiation. Besides mTORC1, mTORC2 
has the potential to block autophagy by activating mTORC1 
(Hosokawa et al. 2009; Jung et al. 2009; Kim and Guan 
2015). Many attempts have been made to evaluate the anti-
tumor effects of statins as monotherapy or in combination 
with chemotherapeutics (Gazzerro et al. 2012), and it seems 
that statins are efficient in suppressing different types of 
malignant tumors including oesophageal, lung, liver, breast, 
pancreatic, endometrial and colorectal tumors (Hassanabad 
2019).

Renal cell carcinoma (RCC)

Although the incidence of renal cell carcinoma RCC has an 
increasing trend in both genders around the world, this trend 
is stable in most developed counties. However, in low- and 
middle-income countries, RCC incidence has an increas-
ing trend (Znaor et al. 2015). Surgical treatment is the first 
option for localized RCC. However, in aggressive tumors it 
should be combined with other treatments with drugs like 
sorafenib (Escudier et al. 2007) and temsirolimus (Miyake 
et al. 2013), which act due to their effects on the receptor 
tyrosine kinases and mTOR signaling pathways. The use 
of these drugs is associated with several problems includ-
ing adverse effects and high cost (Thompson-Coon et al. 
2010). Therefore, there is an urgent need for drugs which 
would prolong the patients’ survival with low cost and lim-
ited adverse effects. It was shown that cell metabolism is 
significantly altered in RCC, and mTOR is a potent media-
tor of cell metabolism (Linehan et al. 2010). The Cancer 
Genome Atlas reported that genetic mutations in the PI3K/
AKT/ mTOR signaling pathway were detected in 6% of RCC 
patients (Grabiner et al. 2014). A comprehensive genomic 
profiling in patients with advanced papillary RCC showed 
genomic mutations of PI3K/mTOR in 8% of cases (Pal et al. 
2018). In chromophobe RCC, genetic mutations in genes 
associated with the mTOR pathway appeared in 15% (23 out 
of 66) cases (Davis et al. 2014).

Head and neck squamous cell carcinoma (HNSCC)

Head and neck carcinoma is the sixth most common type of 
cancers, accounting for about 3% of all cancers (Jemal et al. 
2011). High morbidity and mortality make it one of the most 
dangerous cancers (Rose et al. 2011). Despite all efforts in 
developing the treatment strategies for head and neck car-
cinoma such as surgery, chemotherapy, and radiotherapy, 
unfortunately the outcomes are unsatisfactory (Bernier et al. 
2009). A whole-exome sequencing study showed that about 
30% of HNSCC patients had mutations in the PI3K pathway 
(Lui et al. 2013). It was shown that the mTOR signaling 
is activated in approximately 80–90% of HNSCC patients, 
particularly in those with positive HPV infection (Molinolo 
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et al. 2007). Patients with advanced HNSCC have a number 
of mutations including PIK3CA, mTOR, and PTEN indicat-
ing that the co-existence of these mutations could be associ-
ated with progression of the disease (Giudice and Squarize 
2013).

Endometrial cancer (EC)

EC is the most prevalent gynaecological cancer in devel-
oped countries, mainly due to an increase in epidemic of 
obesity, so globally as well (Morice et al. 2016). Satisfactory 
outcomes are expected in patients who are diagnosed with 
early stages of EC. However, in patients with advanced EC 
current treatment options including surgery, chemotherapy, 
and radiotherapy are not very successful (Saso et al. 2011). 
Therefore, there is a need for new drugs to treat patients with 
advanced EC.

Lymphangioleiomyomatosis (LAM)

LAM is a rare progressive lung disease, mostly affecting 
females in reproductive age. It is associated with mutations 
in tuberous sclerosis (TS) genes, renal angiomyolipomas, 
and lymphatic spreads (McCormack 2008). Studies on 
tuberous sclerosis complex (TSC) 1 and 2, the negative 
regulators of mTOR, provided a new insight into the LAM 
pathophysiology and enabled development of new drugs 
including sirolimus for the treatment of LAM (Goncharova 
et al. 2002; Kwiatkowski et al. 2002). Promising results have 
been achieved with sirolimus in clinical settings. Concern-
ing lungs, it was shown that following treatment with siroli-
mus the mean forced expiratory volume in 1 s (FEV1) and 
the forced vital capacity (FVC) increased, and the residual 
volume decreased when compared with baseline values. 
(Bissler et al. 2008; Davies et al. 2011). Besides, sirolimus 
induced regression of kidney angiomyolipomas, SEGAs, 
and liver angiomyolipomas in LAM patients (Dabora et al. 
2011).

Breast cancer (BC)

BC is the most prevalent malignancy in women, involving 
one in eight of US women. Several risk factors have been 
suggested for BC such as obesity, family history, hormone 
replacement therapy, and genetic defects (Islam et al. 2017). 
Obesity does not only increase the BC incidence, but also 
worsens the prognosis of the disease as well. Dyslipidemia, 
including hypercholesterolemia, is a frequent comorbidity of 
obesity (Borgquist et al. 2018). Lowering plasma cholesterol 
level maight be beneficial in management of BC patients. 
The majority of genetic alterations in BC are located 
upstream of the mTOR pathway, contributing to the hyper-
activation of the mTOR signaling. Mutations in PIK3CA are 

common in BC patients and nearly 20–50% of cases have 
them. These mutations participate in 35%, 23%, and 10% of 
hormone-receptor positive, human epidermal growth factor 
receptor 2-positive, and triple-negative BCs, respectively 
(Stemke-Hale et al. 2008). Mutations in PTEN appear in 
3% of BC patients, while PTEN loss can be detected in about 
30% of BC patients (Stemke-Hale et al. 2008; Engelman 
et al. 2006). The mTOR mutations also occur in BC patients 
and are mostly located at FAT and FATC domains (Hardt 
et al. 2011).

Prostatic cancer (PC)

PC is the most prevalent type of cancer in men throughout 
the world, and is considered as the second leading cancer-
related death cause in the US (Bashir 2015; Roudsari et al. 
2021). Despite significant improvements in treatment strat-
egies for PC, the advanced disease is associated with rela-
tively high mortality (Sartor and Bono 2018). Therefore, it 
is important to develop new drugs to treat PC. The mTOR 
pathway was found to be significantly activated in PC and 
genetic alterations in the mTOR signaling were found in 
42% of PC tissues (Taylor et al. 2010). Genetic mutations in 
the PI3K/Akt signaling pathway were detected in 30–50% 
of primary PC tissues (Morgan et al. 2009).

Glioblastoma (GBM)

GBM is the most prevalent brain tumor in adults with the 
highest death rate among all brain tumors (Ostrom et al. 
2018). The current strategies for GBM treatment include 
surgery, chemotherapy, and radiation. Nevertheless, the 
patients have poor outcomes with the median survival time 
of approximately 14 months. Unfortunately, the GBM pro-
gression is unavoidable, thus making it one of the most lethal 
malignant tumors (Meir et al. 2010).

Colorectal cancer (CRC)

CRC is considered as a major global health problem with an 
increasing incidence rate worldwide (Arnold et al. 2017). 
Although there are remarkable advancements in CRC treat-
ments, the outcomes of patients with advanced CRC are still 
quite poor. The major focus today is on improvement of pre-
vention strategies (Segnan et al. 2005). A relatively recent 
meta-analysis indicated a lower incidence rate of CRC fol-
lowing statin treatment (Bonovas et al. 2007). Another study 
suggested that statins have a beneficial effect on CRC cells 
by activating the bone morphogenic protein (BMP) (Kodach 
et al. 2007).
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Myotoxicity/myopathy

Statin therapy may be accompanied by some adverse effects, 
especially musculoskeletal (Ward et al. 2019). Statin-related 
muscle symptoms vary from mild muscle fatigue to rhab-
domyolysis characterized by massive damage of muscles, 
resulting in release of intracellular muscle cells contents 
into the bloodstream (Simic and Reiner 2015; Reiner 2014). 
Although a plethora of evidence supports the idea that high 
doses of statins may cause higher risk of statin-related myo-
pathy, the mechanisms that contribute to muscle damage 
remain poorly defined. For instance, impairment in mito-
chondrial activity (Kaufmann et al. 2006); overexpression 
of atrogin-1, which can act as a mediator of muscle injury in 
patients treated with statins (Hanai et al. 2007); decrease in 
synthesis of muscle proteins subsequent to the suppression 
of eIF2B expression (Tuckow et al. 2011); suppression of 
Rab1 GTPase that causes endoplasmic reticulum–to-Golgi 
traffic inhabitation (Sakamoto et al. 2011); and reduction in 
creatine synthesis have been implicated in statin-induced 
myopathy (Mangravite et al. 2013).

It was also suggested that the AKT signalling pathway 
plays an important role in statin-related myopathy (Mullen 
et al. 2011). In muscle cells, AKT is activated by several 
factors including hormones, cytokines, and growth factors, 
which induce the AKT transmission to the plasma mem-
brane and therefore AKT phosphorylation. The AKT path-
way induces protein synthesis and degradation by activation 
of mTOR (Schiaffino and Mammucari 2011), and forkhead 
box O inhabitation (Crossland et al. 2008). Thus, the AKT 
pathway plays an important role in muscle growth. AKT 
activates the mTOR pathway by two different mechanisms 
that induce protein synthesis. First, mTOR induces the phos-
phorylation of the ribosomal protein S6 kinase (rpS6), and 
as a result activation of the rpS6 occurs (Magnuson et al. 
2012). Second, mTOR makes eIF4E accessible for protein 
synthesis by phosphorylating the 4E-BP1, leading to inter-
ruption of 4E-BP1 interaction with eIF4E (Gingras et al. 
1998). The mTOR signalling pathway may be involved in 
statin-related myopathy. Statins change the AKT phospho-
rylation at S473 level unlike T308. mTORC2 phosphoryl-
ates the AKT at S473 level. Furthermore, statins inhibit 
the effects of mTORC1 on dysregulation of rpS6, s6K, and 
4E-BP1 phosphorylation. Therefore, impairment in the 
AKT/mTOR signalling pathway may be the key mechanism 
for the statin-related myopathy (Bonifacio et al. 2015; Bouit-
bir et al. 2020).

Wound healing

The burns and injuries are considered to be an important 
health problem globally (Stylianou et al. 2015). There are 
three categories of burns based on the severity of the injury 

including the first-degree or superficial, second-degree 
involving partial thickness of the skin, and third-degree 
involving full-thickness of the skin (Ocon et al. 2019). Sev-
eral complications may occur following burns such as infec-
tions, hypertrophic scars, as well as mental and functional 
disabilities (Deeter et al. 2019). It has been suggested that 
procrastination in wound-healing correlates with signifi-
cantly higher mortality (Nitzschke et al. 2014). Significant 
efforts have been made to develop therapeutic options to 
accelerate the process of wound healing (Zhao et al. 2019). 
This process is stratified into four main stages; (1) hemosta-
sis, (2) inflammation, (3) proliferation, and (4) resolution 
(Gosain and DiPietro 2004).

The Akt/mTOR pathway has been involved in different 
stages of wound-healing process including extracellular 
matrix (ECM) remodelling (Zhang et al. 2006), re-epitheli-
sation (Calautti et al. 2005; Kitamura et al. 2008), and col-
lagen production (Blakytny and Jude 2006; Ong et al. 2007). 
Several studies tried to find out how regulation of the AKT/
mTOR pathway may affect wound-healing (Huang et al. 
2015; Xing et al. 2015). Stimulation of the AKT/mTOR 
pathway increased cell proliferation, migration, and wound 
healing (Squarize et al. 2010). Castilho et al. claimed that 
overexpression of the AKT/mTOR pathway accelerated the 
proliferation and migration of epithelial cells and, conse-
quently, the wound healing process (Castilho et al. 2013). 
Later, it was shown that the activation of AKT/mTOR facili-
tates the wound-healing process by enhancing angiogenesis 
and fibrogenesis (Tomioka et al. 2014).

Diabetic ulcers

Slower wound healing is a well-known complication associ-
ated with diabetes mellitus and is attributed to higher apop-
tosis rate, and decrease in angiogenesis, collagen formation 
and organization as well as infiltration delay (Fadini et al. 
2010; Jeffcoate and Harding 2003; Lerman et al. 2003). 
Lymphatic vessels are known to be important for draining 
proteins from the extracellular area and tissues around the 
wounds, and also for adjusting the immune system responses 
(Oliver and Detmar 2002; Witte et al. 2001). Impairment of 
lymphatic vessels function could result in refractory diabetic 
wounds (Saaristo et al. 2006). It has been shown that the 
mTOR pathway stimulated the accumulation of myeloid-
derived suppressor cells (MDSCs). In high-glucose envi-
ronments, MDSCs is differentiated into inflammatory mac-
rophages, which have the ability to impair the process of 
diabetic ulcers healing. Therefore, blocking of mTOR could 
contribute to improvement of diabetic-ulcer healing process 
(Li et al. 2021).
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Depression

Depression, a very common psychiatric state and is one of 
the major causes of disability worldwide. It is a syndrome 
characterized by, but not limited to, repeated episodes of low 
mood, feeling guilt and worthlessness, problems with sleep 
and appetite as well as libido (James et al. 2018). Every 
individual is at 17% risk of developing major depressive dis-
order during his/her lifetime (Kessler et al. 2005). Although 
the treatment options for depression have evolved during 
the time, the effects of new anti-depressant drugs are still 
very far from desired (Rush et al. 2006). For example, in a 
clinical trial on patients diagnosed with major depression, 
the response rate in placebo group was 35–40%, while the 
response rate of patients treated with anti-depressants was 
50–60% (Furukawa et al. 2016). Therefore, there is an urgent 
need for new anti-depressants. Recent studies have focused 
on finding drugs that target alternative pathways causing 
depression (Cowen 2017). Several mechanisms were inves-
tigated in animal models such as an increase of serotoner-
gic effects (Al-Asmari et al. 2017), change in blood cortisol 
concentration and hippocampus concentration of serotonin 
(ElBatsh 2015), inhibition of NMDA receptors and NO-
cGMP synthesis (Ludka et al. 2013), as well as an increase 
of the brain-derived neurotrophic factors (Ludka et al. 2013; 
Ludka et al. 2017). Statins can reduce depressive-like behav-
iour by decreasing neuronal apoptosis, microglia, and oxida-
tive stress, as well as by suppression of TNF-α, IL-1, and 
IL-6 expression (Lim et al. 2017; Taniguti et al. 2019; Yu 
et al. 2019). Only one study demonstrated that the mTOR 
signalling pathway may be responsible for antidepressant-
like effects of statins (Ludka et al. 2016).

Amyotrophic lateral sclerosis (ALS)

ALS is a detrimental neurodegenerative disease affecting 
both the upper and lower motor neurons (Pratt et al. 2012). 
The aetiology of ALS has not been clarified so far and no 
particular treatment has been found. ALS is associated with 
muscle atrophy, fibrosis, and inflammation (Iwasaki et al. 
1991; Jensen et al. 2016). The mTOR signalling is important 
for muscle regeneration by regulating the myogenic gene 
expression (Lepper et al. 2009). An in vivo study showed 
that the AKT/mTOR activation induced muscle hypertrophy 
and prevented muscle atrophy (Bodine et al. 2001).

Parkinson disease (PD)

PD is the second most prevalent neurodegenerative disorder 
affecting 2–3% of individuals older than 65 years (Poewe 
et al. 2017). The main current strategy for management of 
PD is symptomatic treatment with drugs that increase the 
dopamine levels (Connolly and Lang 2014; Lashgari et al. 

2021). Although the current treatments increase the patients’ 
quality of life, they are not able to prevent the progression 
of the disease (Kalia et al. 2015). Autophagy is one of the 
central mechanisms involved in pathogenesis of PD and 
some studies suggested that increase in autophagy might 
have neuroprotective properties (Park et al. 2014; Tan et al. 
2014). Statins are able to activate autophagy by inducing the 
AMPK and mTOR pathways. Therefore, there is a possibil-
ity that statins might have the potential to be beneficial for 
patients with PD (Lashgari et al. 2021).

COVID‑19

Recently, the world is facing serious consequences of pan-
demic of the a new disease, COVID-19, caused by SARS-
CoV-2 (Khatami et  al. 2020). The speed of COVID-19 
spread and its high mortality caused a great interest in study-
ing all the aspects of this disease during the past two and 
half years. The efficacy of many agents/drugs for COVID-19 
treatment has been evaluated. However, no specific treat-
ment was fully efficient so far. To develop new drugs/agents 
against COVID-19, it is important to identify the virus struc-
ture (as well as those of all variants), life cycle, and the 
disease process. The mTOR downstream signalling path-
ways play an important role in a variety of cellular func-
tions including protein synthesis, metabolism, autophagy, 
cell cycle, and regulation of the immune system (Laplante 
and Sabatini 2012). The mTOR distribution contributes to 
several disorders such as CVD, cancer, and some metabolic 
diseases (Saxton and Sabatini 2017; Weichhart 2018). It 
was found that a cross-talk between the virus and the AKT/
mTOR pathway may cause a significant decrease in produc-
tion of the virus (Appelberg et al. 2020). An in vitro study 
indicated that the PI3K/Akt/mTOR pathway might be a 
key pathway in COVID-19 infection. The effects of three 
mTOR inhibitors on SARS-CoV-2 were assessed and it was 
found that the PI3K/Akt/mTOR, DNA-damage response 
pathway, and ABL-BCR/MAPK are essential for the virus 
infection (Garcia et al. 2020). Altogether, the mTOR signal-
ling pathway is crucial for the virus infection, replication, 
and progress by inducing autophagy, prevention of protein 
synthesis, and suppression of inflammation (Khan 2021). 
Therefore, targeting the mTOR signalling pathway could be 
an interesting objective for treatment of SARS-CoV-2 infec-
tion (Khan et al. 2021).

It was hypothesized that statins have several properties 
which may be useful in SARS-CoV-2 treatment including: 
(1) suppression of the CD147 expression, which is crucial 
for the virus entry and human cells infection; (2) modifica-
tion of lipid rafts caused by the virus causing a decrease of 
infection and viral replication; (3) modification of autophagy 
which is probably involved in SARS-CoV-2 infection; (4) 
suppression of the virus induced uncontrolled inflammation 
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which has deleterious effects on patients health; and (5) 
decrease in thrombus formation that is considered as one 
of the most often complications of COVID-19 (Rodrigues-
Diez et al. 2020). Therefore, several clinical studies have 
been performed to assess the effects of statins on COVID-
19. A recent meta-analysis confirmed the beneficial effects 
of statins on clinical outcomes of patients with COVID-19 
and encouraged patients who are on statin treatment to con-
tinue the drug treatment during COVID-19 infection (Pal 
et al. 2021).

Statins in treatment of inflammatory 
diseases: targeting the mTOR pathway

Many studies have been performed with the aim to under-
stand the role of statins in inhibition of inflammatory process 
(Fig. 1). This review highlighted the potential of statins in 
treatment of inflammatory diseases. The effects of different 
statins are discussed below.

Atorvastatin

Statins decrease serum LDL-C and therefore can prevent 
CVD (Table 1) (Han et al. 2018). 3MA or LY294002 is a 
suppressive inhibitor of atorvastatin by phosphorylation of 
AMPK, AKT, and mTOR in LPS-induced IL-1β and TNFα 
expression in RAW264.7 (Table 1) (Ludka et al. 2013). 
Compound C, an AMPK inhibitor, was shown to control 
autophagy by atorvastatin through AMPK/mTOR in vitro 
and in vivo (Sheng et al. 2020). Atorvastatin induced cellular 
autophagy in cervical cancer cells, which was confirmed 
by upregulation of the AMPK, and AKT/mTOR pathways. 
Combination of atorvastatin and the autophagy inhibitors 
might be a new option for cervical cancer treatment (Jones 
et al. 2017). A plethora of evidence has shown that statins 
have anti-inflammatory effects in patients with ankylosing 
spondylitis (AS). Atorvastatin can also suppress the expres-
sion of IL-1β, and TNFα in murine macrophages (Table 2) 
(Jin et al. 2012). IFN-γ, TNF-α, IL-1, IL-2, IL-6, and TGF-β 
block the arrangement of autophagosomes, while IL-4, 
IL-10, and IL-13 induce autophagy. Autophagy reduces 
the release of IL-1β by inhibition of NLRP3 inflammation. 
The autophagosome arrangement suppresses the p38MAPK 
phosphorylation, which occurs in down-regulation of TNF-α 
(Qu et al. 2013). Ludka et al. suggested that atorvastatin 
improved depression by the PI3K/Akt/GSK-3β/mTOR path-
way. Atorvastatin activated AKT/mTOR, while it inhibited 
the GSK-3β. Therefore, it was suggested that, at least this 
statin, might have a favourable antidepressant-like effect.

Simvastatin

Simvastatin decreased the expression of AKT, and mTOR 
in A498 and 786-O renal cancer cells (Table 2). Simvastatin 
seems to have anti-tumor effects by suppressing the IL-6-in-
duced phosphorylation of mTOR/JAK2/STAT3. It has been 
demonstrated that simvastatin has anticancer properties due 
to inhibition of the mTOR/AKT pathway (Markowitsch et al. 
2020). Rapamycin (a mTOR inhibitor) decreased olanzapine 
(OLZ)-stimulated hepatocellular lipids content in HepG2 
cells (Table 2). It was shown that simvastatin improves OLZ-
induced lipid metabolic content by inhibition of the mTOR 
signaling pathway (Liu et al. 2019).

Topical application of simvastatin increased collagen 
production, and enhanced the myofibroblast population in 
male Wistar rats. Therefore, it might be recommended for 
wound healing (Table 1) (Ramhormozi et al. 2021). The 
analysis of qRT-PCR showed improved wounds healing as 
a result of simvastatin treatment due to inhibition of AKT/
mTOR and the effects of simvastatin on inflammatory pro-
cess (Rezvanian et al. 2021). Simvastatin suppressed endo-
metrial cancer cells (ECC) proliferation in a dose dependent 
way due to inhibition of the AKT/mTOR pathway in ECC 
and Ishikawa cells (Table 2) (Stine et al. 2014). RCC is often 
resistant to chemotherapy and radiation. Simvastatin sup-
pressed cell development of A498 and 786-O cells (Table 2). 
Simvastatin suppressed RCC cells apoptosis by inhibition of 
AKT/mTOR,/ERK (Fang et al. 2013). Simvastatin also had 
anti-tumor effects in breast cancer. In clinical studies, simv-
astatin blocked the PI3K/Akt/mTOR signaling by inducing 
PTEN and by dephosphorylating AKT and S6RP (Wang 
et al. 2016).

A recently published study showed that treatment with 
simvastatin was associated with inhibition of proliferation, 
migration, and tumorspheres-formation in PCa cells (Jimé-
nez-Vacas et al. 2021). Simvastatin was found to be benefi-
cial in diabetic ulcers. In diabetic mice, simvastatin upregu-
lated the VEGF mRNA expression and the content of nitric 
oxide in a wound, reduced the H2O2-induced apoptosis, 
and increased the infiltration of M2 macrophages, thereby 
improving the wound-healing process. VEGF was the main 
factor responsible for restoring wound healing in diabetic 
ulcers treated with simvastatin Bitto et al. 2008). Topical 
application of simvastatin was associated with accelera-
tion of diabetic ulcer healing, at least partially, by the AKT/
mTOR signalling pathway (Asai et al. 2012).

Lovastatin

Lovastatin was shown to decrease the levels of nitric oxide 
by decreasing inducible nitric oxide synthase (iNOS) expres-
sion in lipopolysaccharide (LPS)-stimulated RAW264.7 
macrophage cells (Table 2). The mRNA level of TNF-α 
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was decreased by lovastatin. Besides, the phosphorylation 
of AKT, (NF)-κB, and mTOR subsequently decreased (Xia 
et al. 2001; Zhu et al. 2019). Lovastatin in combination with 
temozolomide (TMZ), decreased the phosphorylation of 
AKT and the mTOR expression in both U87 and U251 cell 
lines when compared with TMZ alone. Moreover, lovastatin 
decreased LAMP2 and death in both U87 and U251 cell 
lines (Zhu et al. 2019). TMZ is a chemotherapeutic drug 
used in combination with radiotherapy to treat newly diag-
nosed GBM patients. Zhu et al. evaluated the effect of TMZ 
and lovastatin combination therapy in GBM cells. They 
found that lovastatin enhanced the cytotoxicity of TMZ and 
TMZ-induced apoptosis and impaired the autophagic flux 
of GBM cells. These authors claimed that impairment in 
autophagic flux following lovastatin administration could be 
explained by inhibition of autophagosome-lysosome fusion 
machinery and the AKT/mTOR pathway (Zhu et al. 2019).

The details of how statin-dependent activation of BMP 
might have an effect on CRC was recently explained by 
Jacobs et al. using Kinome-wide analysis. Lovastatin treat-
ment was associated with dephosphorylation of mTOR, 
AKT, and 70S6K and, even more important, they suggested 
that the AKT/mTOR inhibition was dependent on the PTEN 
activity (Ouahoud et al. 2021).

Fluvastatin

Fluvastatin was shown to induce apoptosis and inhibit the 
proliferation of RCC cells in vitro (Table 2). Activation of 
AKT inhibits the downstream effects of mTOR and p70 S6 
kinase (Cui et al. 2017). Fluvastatin blocks the mTOR phos-
phorylation and p70 S6 kinase. The inhibition of p70 S6 
kinase motility by fluvastatin suggests that this statin might 
have antitumor effects (Okubo et al. 2020; Lindqvist and 
Pelletier 2009). The mechanisms behind statins-induced 
apoptosis, including fluvastatin, in HNSCC were explained 
by Tsubaki et al. (Tsubaki et al. 2017). It was shown that 
fluvastatin and simvastatin enhanced apoptosis by activat-
ing the caspase-3 (a key indicator of cell apoptosis), and 
inhibiting the geranylgeranyl pyrophosphate (GGPP). GGPP 
is a major substrate for anchoring Ras to the membrane. 
Decrease of GGPP is associated with dissociation of Ras 
from the membrane and consequently inhibiting the Ras-
mediated growth signaling (McTaggart 2006; Schubbert 
et al. 2007). These authors demonstrated that suppression 
of the membrane localization of Ras and up-regulation of 
Bim contributed to inhibition of the ERK and mTOR signal-
ing pathways.

Pravastatin

Pravastatin induces autophagy in endothelial cells in vivo 
and in  vitro (Table  1) (Nakao et  al. 2007). 3-MA, as Ta
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an autophagy inhibitor, decreased pravastatin-induced 
autophagy (Liao et al. 2018). It has been shown that pravas-
tatin downregulated the AMPK/mTOR signaling pathway, 
thus blocking the inflammatory process (Emanueli et al. 
2007). Pravastatin was shown to protect endothelial cells 
from dexamethasone-induced autophagy by inhibition of the 
AMPK-mTOR signaling pathway (Nakao et al. 2007).

Rosuvastatin

Downregulation of the mTOR expression, upregulation of 
Beclin-1 expression, and the activation of autophagic system 
were found to be beneficial in PD (Table 2). Rosuvastatin 
was shown to decrease the mTOR levels and increase the 
Beclin-1 levels in patients with PD (Kang et al. 2017).

Pitavastatin

It was found that pitavastatin inhibited the PI3K/Akt/mTOR 
signaling which led to a decrease in apoptosis and cell prolif-
eration (Table 2) (Hu et al. 2020; Tajiri et al. 2014).

Conclusion

Statins are currently the most often prescribed and effec-
tive LDL-C lowering drugs for prevention of atherosclerotic 
CVD. Statins decrease total and LDL-C, reduce triglycer-
ides, and slightly increase HDL-cholesterol. Therefore, 
they are decreasing the risk of cardiovascular events and 
cardiovascular mortality. In addition to cholesterol metabo-
lism, statins also participate in decreasing the circulating 
isoprenoids, and inactivation of signaling proteins. Statins 
also have anti-inflammatory, antioxidant, antiproliferative 
and immunomodulatory effects (Bahrami et al. 2018; Pari-
zadeh et al. 2011; Koushki et al. 2021). Statins can stabilize 
atherosclerotic plaques and prevent platelet aggregation as 
well (Kim et al. 2019; Chidambaram et al. 2021). Statins 
are generally very well tolerated drugs. However, like all 
pharmaceuticals, they have adverse effects. Adverse effects 
of statins may affect muscles, and to a much less extent liver. 
Patients who are treated with statins, particularly with high 
doses, have an increased rate of myopathies and extremely 
rarely rhabdomyolysis. All these adverse effects are rare, 
and the safety of statins is generally very acceptable (Kim 
and Choi 2021; Adhyaru and Jacobson 2018). Many studies 
have shown that the mTOR signaling pathway is effective 
in initiating inflammation and inflammation and diseases. 
Activation of the mTOR/ NF-kB pathway results in upregu-
lation of the IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, and 
TNF-α. On the other hand, induction of the P13K/AKT/
mTOR pathway promotes the TNF-α, IL-1β, TGF-β, IL-12, 
and IL-6 secretion (Lashgari et al. 2020). The conclusion of 

this extensive literature review might be that many statins 
are able to downregulate the mTOR signaling pathway 
and modulate the cell hemostasis and autophagy. Both the 
mTORC1 and mTORC2 signaling pathways are blocked by 
statins in adipose tissue (Martinet et al. 2014). Inhibition of 
the mTOR signaling pathway by statins may be a target for 
treatment of different inflammatory and maybe also some 
malignant (as an adjunct treatment) diseases.
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